CV RESEARCH


RESEARCH



Paper

[2] The one-row colored \(\mathfrak{sl}_{3}\) Jones polynomials for pretzel links, J. Knot Theory Ramifications, 32. (1) (2023), Article ID: 2250105, (arXiv)
[1] \((2,2m)\)型トーラス絡み目の普遍\(\mathfrak{sl}_{2}\)不変量 (修士論文)

Talk

[5] Friday Tea Time Zoom Seminar, 交代プレッツェル結び目に対する一行\(\mathfrak{sl}_{3}\)色付きJones多項式のtail Friday, July, 8th, 2022 Zoom
[4] 研究集会「結び目の数理Ⅳ」, The one-row colored \(\mathfrak{sl}_{3}\) Jones polynomials for pretzel links Saturday, December, 25th, 2021 早稲田大学 (報告集, slide)
[3] 広島大学 トポロジー・幾何セミナー, The one-row colored \(\mathfrak{sl}_{3}\) Jones polynomials for pretzel links Thursday, November, 30th, 2021 広島大学 (ONLINE)
[2] 研究集会「東北結び目セミナー 2021」, The one-row colored sl3 Jones polynomials for pretzel links Friday, October, 15th 2021 秋田大学 (ONLINE)
[1] 研究集会「拡大KOOKセミナー」, The one-row colored sl3 Jones polynomials for (p, q, r) pretzel links Tuesday, August,31th, 2021 大阪工業大学 (ONLINE)


TOP

Kotaro Kawasoe

k_kotaro(at)meiji.ac.jp, kwse.sfgh09(at)gmail.com